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Dispersion of Transient Signals in Microstrip
Transmission Lines

RICHARD L. VEGHTE, MEMBER, IEEE, AND CONSTANTINE A. BALANIS, FELLOW, IEEE

Abstract —The distortion of an electrical pulse caused by dispersion as

it propagates afong a microstrip line is investigated. A model for dkpersion

of the phase constant is selected to meet the frequency, accnracy, and

microstrip parametric reqnirements. Numerical integration and Taylor

series expansion approximation techniques are used to compute the shape

of dc dkpersed pulses having square and Gaussian envelope shapes. Taylor

series expansion methods are more convenient for the anafysis of RF
pulses.

I. INTRODUCTION

~ HE DESIGN of MI~s requires a knowledge ofT switching and transient signal behavior in microstrip

transmission lines and semiconductor structures. The dis-

tortion of dc and RF pulses in waveguides and dispersive

materials has received, in the past, considerable attention

[1]-[3]. However, distortion of pulses, both dc and RF, in

microstrip lines has not yet been examined thoroughly [4].
As an electrical pulse travels along a microstrip line, it

becomes distorted due to the dispersion and attenuation

characteristics of the line. While the electric and magnetic

fields are confined to one material in waveguides, coaxial

lines and striplines, the microstrip is open so that the fields

are partially in the air and partially in the dielectric. The

air–dielectric interface prevents propagation of a pure

TEM mode. Thereforej the phase constant is not a linear

function of frequency, and it results in dispersion.

Below a certain frequency (L), the propagation is ap-

proximately TEM and dispersion is virtually nonexistent.

Pulses which have a spectral content above L will be

dispersed since the higher harmonics of the pulse will

travel at a slower velocity than the lower harmonics. This

paper combines existing microstrip dispersion formulas

and analytical techniques to examine in microstrips the

dispersed shape of dc and RF pulses having square and

Gaussian envelope shapes.

II. DISTORTION OF SIGNALS

The voltage or electric field at z = O (a reference point in

the microstrip line) is represented by

(u(t), –T/2<l<T/2
U(t, z=o)=

o,
(1)

elsewhere
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In the frequency domain, the signal can be written as

V(@, z= O)= J~’2u(t, z= O)e-Ju’dt (2)
– T/2

where Y(a) and u(t) form a transform pair. For certain

transient signals, such as a square pulse, the limits – T/2
< t< T/2 define the pulsewidth, and the signal is confined

to a short time period. For a Gaussian pulse, the time

range c}f – m < t< m is needed to completely characterize

the response.

At a distance L, the signal (or pulse) in the frequency

domainl becomes

V(ti, z= L)= V(ti, z= O)e-Y(”J~. (3)

The frequency-dependent propagation constant is

y(o) =a(u)+jp(@) (3a)

where a(u) and B(o) are, respectively, the attenuation

and phase constants. For this investigation, the frequency-

dependent attenuation constant a(ti) is assumed to be

negligible, so that (3) reduces to

V(u, z= L)= V(u, z= O)e-J~(@)~. (4)

Taking the inverse transform of (4) leads to the time-

domain representation of the pulse at z = L, and it can be

writ ten as

lW
u(t, L) = ~~_ V(ti, z= L)e+j@~d@

w

lCO
.—

J( V u, z = 0)e~[@’-8(u)~] da. (5)
2T .~

For lossless lines, the phase constant /?(ti) can be written

as

/3(u)=u/==:{~. (6)

The expression V(O, z = O), the transform of u(t, O), is

easily obtained for many common waveshapes such as

square, Gaussian, triangular dc pulses, and any RF wave

modulated by these pulses. The transforms of more com-

plex waveforms can be constructed using these basic wave-

forms.

The Fourier transform of a Gaussian pulse whose time-

domain representation is

j(t) =Aexp(-a2t2) (7)

is given by [5]

A~T
F(cJ)=— exp(– Q2/4a2)

a
(8)
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where 2/a is the 3-dB pulsewidth and A is the amplitude

of the pulse in the time domain. For a square pulse, the

time-domain representation is

while its Fourier transform is [5]

sin(Lu)
F’(o) =2A

u
(lo)

where 2 L is the pulsewidth and A is the amplitude of the

pulse.

The Fourier transform of an RF pulse with a carrier

frequency UO has the same form as the dc pulse, but it is

split into two equal components, one of which is shifted up

in frequency and the other is shifted down. For example, a

square pulse with a time-domain representation of

f(,) = (p% –L<t<L
(11)

, otherwise

has a Fourier transform of

F(cJ)=A

[

sin[L(ti-uO)] + sin[L(ti+tiO)]

(ti-tie) 1(u+@o) “ ’12)

Fourier transforms, instead of Laplace transforms, are

used to analyze the pulses because they are more conveni-

ent for the interpretation of the dispersion characteristics

from the real frequency spectrum point of view. This is

very attractive for the examination of the effective dielec-

tric constant variations as a function of frequency and

their impact upon the dispersion of the pulses.

III. I?REQUENCY-DEPENDENT PHASE CONSTANT

Numerous methods have been used to determine Cre,t(O)

for microstrip lines. Many papers use full-wave solutlons

such as the spectral-domain [6] or transverse current distri-

bution methods [7]. These full-wave solutions have been

examined [8], compared to other methods, and been found

to be quite accurate. However, these methods depend on

time-consuming computations and not on closed-form

equations, which would be most desirable when con-

fronted with the evaluation of (5). Some papers have

curve-fitted equations for e,,ff ( Q ) which are simple to use.

However, none of these equations extend above 20 GHz,

and they are not adequate for many transient signals that

have frequency components up to 100-200 GHz.

Two methods that may be used to calculate ~re,,( O)

which provide physical insight and fairly simple closed-

form expressions, although they may not be as accurate as

the full-wave analysis, are 1) coupled modes (TEM, TE,

and TM modes) [9], [10] and 2) single longitudinal section

electric (LSE) [11].

Equations which use coupled modes are given by

Schneider [12] (TEM/TE), Carlin [13] (TE/TM),

Kobayashi [14] (TEM/TM), Pramanick and Bhartia [15]

(TEM/TE), and Yamashita [16] (curve fitting using the TE

mode). Getsinger [11] uses the LSE model to determine the

frequency-dependent dielectric constant, while Kirching

and Jansen [17] curve-fit results from a full-wave,

spectral-domain analysis. From the standpoint of analyti-

cal rigor, simplicity, and agreement with other existing

data, it was found that the model for C,c,,(u) of Pramanick

and Bhartia [15] was as accurate as any of the others. For

this model C,C,,(u) is expressed as

where

(13a)
.“

relative dielectric constant of the substrate,

c,c,,(~~ effective relative dielectric constant at zero

frequency,

h height of microstrip line above ground plane,

20 characteristic impedance of microstrip line,

PO free-space permeability.

IV. EVALUATION OF INTEGRAL EQUATION

Three different methods to evaluate the integral of (5)

are examined in this section. The complexity of the

frequency-dependent phase constant ~(ti) precludes solv-

ing for the integral in closed form. Thus, numerical in-

tegration techniques are examined, and a quadratic ap-

proximation to /3(u) (the Taylor series expansion method)

is used to evaluate the integral of (5). The method of

stationary phase is also examined as a possible technique

to evaluate (5).

Numerical integration is the most straightforward tech-

nique for evaluating (5), but its accuracy depends on the

amount of computer time and storage ‘space available. DC

pulses use less computer resources than RF pulses and this

method is best suited for them. The Taylor series expan-

sion method [1] is an approximation to the full integration

of (5). It is slightly less accurate than numerical integra-

tion, but it requires much less computer time to evaluate

the integral, especially for RF pulses.

In (5), the limits of integration are – co < u < co; how-

ever, beyond a certain radian frequency ti~, the contri-

butions to the integral are negligible. Narrower pulses have

a higher frequency content and thus will need a higher u~;

thus, significant parts of the integral are not excluded. If ~

is the width of the pulse, then

u~ = l/r (14)

where { is a constant which depends on the waveshape.

For example, for a square pulse with a sharp rise time

(high frequency content), { is about 500. For a Gaussian

pulse with a slower rise time, a { of 20 is sufficient. Thus,

(5) becomes
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This can be written as a series approximation of the form using

where N is the number of divisions in the frequency

spectrum and Au ( = 2c/r/N) is the width of each uni-

form segment. Since we are concerned only with the real

part of the pulse, (16) becomes

(17)

Equation (17) is easily programmed on the computer once

V(tiZ, z = O), the Fourier transform of the pulse being

considered, is known.

In addition to using numerical integration to evaluate

(5), there are approximate methods which can represent it

in closed form. One such method is the Taylor series

expansion, where the phase constant B(u) is represented

by a Taylor series of [1], [2]

~((.J)= /l(LJo) +/v((Jo)((d-(.Jo)

+ :B’’(tio)(u–(dO)z“ ., . (18)

The first three terms of the Taylor series expansion are

used to approximate the phase constant in the vicinity of

UO. This is referred to as the quadratic approximation. For

the cases being investigated, it is a good assumption to

consider the phase constant to be a quadratic function of

frequency. If the pulses are sufficiently wide compared to

the carrier frequency, then only a small segment of the

~(ti) curve is used and such an approximation is valid.

The expressions for /3’(uO) and ~“(tiO) are

(19)

(20)

It is possible to obtain closed-form solutions to (5) using

the quadratic approximation if the signal in the frequency

domain at z = O, V( U, z = O), can be written in closed

form. Closed-form expressions have been derived to

evaluate (5) for Gaussian [1] and square [2], [3] RF-mod-

ulated pulses dispersed as they travel in a waveguide.

These equations were modified for microstrips, where the

frequency-dependent ~(u) of (6) was formed using

Pramanick and Bhartia’s model [15] for 6,,,,( u).

The method of stationary phase [18] is used to evaluate

integrals of the form

I(t) = JmF(cd)eJ’v(”) da
—cc

‘+’”geG7@Je’’(”s’’21)
where a, represents the stationary phase point obtained

(#((+) =1– :Y(a,)=0. (21a)

Equation (5) can be rearranged so that it is of the form

V(t, L) = +/_mP’(LJ,z = O)eJ’[”-p(o)L/’] da. (22)
m

Comparing (21) and (22), it is apparent that

F(o)=;v(ti,z=o) (22a)

and

~(u)=u–f?(u);. (2’2b)

It was found that for a given distance L that the pulse

had traveled, the stationary phase point could only be

found for certain” windows” of time. The windows of time

for the cases investigated were found to correspond to the

locaticm of the pulses; however, the time interval was too

short to include the entire pulse in most cases. Therefore,

this technique was found to have limited utility.

V. COMPUTATIONS

The investigation of possible dispersion models for mi-

crostrip transmission lines revealed that there are nurner-

ous candidates to choose from. The selection process be-

came (even more difficult given the fact that there is no

conclusive experimental data for a frequency-dependent

phase constant for microstrip at higher frequencies (above

20 GHz). Thus, it was necessary to compare the existing

metho{ds with each other in order to identify an acceptable

accurate method. When investigating the frequency-depen-

dent phase constant /3(a), it was found that most papers

and books dealt with the frequency-dependent effective

relative dielectric constant c,,,, (u); the two constants are

relatedl by (6).

The six most promising dispersion equations are those

of Getsinger [11], Pramanick and Bhartia [15], Yamashita

[16], Carlin [13], Schneider [12], and Kobayashi [14]. These

were initially chosen because they were valid for high

frequencies (up to 100-200 GHz), which will allow the

analysis of short pulses and pulses with high frequency

contem.t (sharp rise times). These six models cover a wide

range of dielectric constants and microstrip geometries.

Also, these models can be related to the physical micro-

strip line so that conclusions about the dispersed pulse can

be traced to properties of the microstrip line.

A frequency range of 1 to 10000 GHz was used to cover

the entire dispersive region of possible microstrip transmis-

sion lines. The results for various dielectric constants and

different widths and heights of the microstrip line were

investigated. Dielectric constants of 2.33, 3.78, 6.80, 10.2,

and 131.0,were chosen to represent, respectively, duroid-type

materials, fused silica, beryllium oxide, alumina (or similar

soft substrates), and gallium arsenide. Microstrip line

heights were selected to represent the commonly available
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substrate thickness of the various materials. The line widths

were determined so that the w/h ratio was less than and

greater than unity. The widths also were chosen so that the

impedances ofthelineswere on theorderof10–100Q and

were realizable using current fabrication techniques.

The variations of ~,e,,(o) asa functionof frequency for

six different models are shown in Figs 1 and 2. Those in

Fig. 1 are representative for a microstrip with ~,= 10.2,

w = 0.020 in, k = 0.025 in (w/h = 0.8 <1), while those in

Fig. 2 are for a rnicrostrip with c,= 10.2, w = 0.125 in,

h = 0.050 in (w/h = 2.5> 1). The data in these figures

illustrate how the relative effective dielectric constant starts

at c.,,(0) for low frequencies and then increases to ~,, the

diele~tric constant of the material, at high frequencies.

Before proceeding with the comparison of different dis-

persed pulses that use the different models for C,e,,(u), it

will be convenient to eliminate two of the models. Carlin’s

dispersion formula was eliminated since it has the same

characteristics as some of the other models. Schneider’s

dispersion model was in close agreement with the other

models for narrow lines, but it was consistently shifted

toward higher frequencies for the wider lines (as in Fig. 2).

Kobayashi has included a factor which corrects this prob-

lem.

The distortion of a ~=10ps(3-dB width) dc Gaussian

pulse, aspredicted using four of these models, travelinga

distance L = 0.354 in along a microstrip whose parameters

anddimensions arethesame asthose in Fig. 1 is displayed
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in Fig. 3. For comparison, the undistorted pulse is also

exhibited in the figure. The position of the undistorted

pulse has been determined assuming that its velocity of

propagation is based on the effective dielectric constant of

the microstnp at zero frequency. The waveforms of the’

distorted pulses weie computed using numerical integra-

tion for the evaluation of (5), as outlined in Section IV.

The distorted waveforms bf a dc square pulse of 10 ps

obtained using numerical integration and traveling a dis-

tance L = 0.354 in along a microstrip line whose parame-

ters and dimensions are the same as those in Fig. 2 are

shown in Fig. 4. The undistorted pulse is also displayed for

comparison. It is observed, especially in the undistorted

square pulse, that very small localized spikes appear at its

leading and trailing edges. These spikes are spurious and

are a ~“nsequence ‘of Gibbs’s phenomenon associated with

Fourier transforms. Proper choice of the sampling points

can reduce their impact.

The comparison of the dispersion models in Figs. 3 and

4 reveads that the small differences in C,e,,( Q) translate into

small differences in the dispersed waveform. The dif-

ferences in the dispersed pulse (different amplitude,

pulsewidth, and ringing) are particularly small for pulses’

with a narrow spectrum, such as the Gaussian pulse. The

dispersed waveforms are still quite similar for pulses with a

wide slpectral content, such as the square pulse.

Considering ‘the similarities between the dispersed pulses

using the dispersion models of Getsinger, Pramanick and

Bhartia, Yamashita, and Kobayashi, any of these four

dispersion equations would be acceptable for determining

the shape of a pulse as it travels along a microstrip line.

However, Pramartick and Bhartia’s, and, Getsinger’s dis-
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persion formulas look more promising due to their simpler

formulation. If numerical integration is used, the simpler

final expressions for Crc,,(Q) are significant since they will

be evaluated thousands of times for each pulse. If the

Taylor series expansion method is used, it will be easier to

take the first and second derivatives of the phase constant

if either of these two models is used.

In order to choose between Getsinger’s model and

Pramanick and Bhartia’s equation, the question of accu-

racy arises. Since both equations are in the same form, the

choice of the inflection frequency is the only difference

between the two. Getsinger’s inflection frequency is always

lower than the one given by Pramanick and Bhartia.

Getsinger uses the LSE analysis to determine the inflection

frequency, while Pramanick and Bhartia use an inflection

frequency related to the cutoff frequency of the TEI mode

which is derived from coupled-mode theory. The inflection

frequency from the coupled-mode theory will be more

Fig. 7. Square RF pulse with a carrier frequency of 5 GHz at a distance
L = 100 in (254 cm) along a microstrip line (c, = 10.2, w/lr < 1.0).
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Fig. 8. Square RF pulse with a carrier frequency of 10 GHz at a

distance L = 100 in (254 cm) along a microstrip line (c, = 10.2, w /k <

1.0).

accurate than that derived using a LSE analysis. This is

confirmed by the fact that the other four dispersion for-

mulas all had inflection frequencies that were close to

Pramanick and Bhartia’s while Getsinger’s formulas al-

ways produced an inflection frequency that was lower than

all of the others. So, although Getsinger’s equations were

the first ones (and the ones that the others are often

compared to) and while the other four equations would be

satisfactory, Pramanick and Bhartia’s model for c, ~~[15]

was chosen for the continuation of the investigation of

pulse distortion due to dispersion.

The distortion of a ~ = 100 ps (3-dB width) dc Gaussian

pulse that has traveled 40 in along a microstrip line with

c, = 10.2, width = 0.020 in and height = 0.025 in is dis-

placed in Fig. 5. The peak amplitude has attenuated, the

pulse is wider, and ringing is evident. This is typical of a

Gaussian dc pulse with low spectral content. A square dc

pulse that has a width of 250 ps and has traveled 1 in
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along a microstrip line with c,= 10.2, w = 0.025 in, and

h = 0.025 in is shown in Fig. 6. It is apparent that major

distortion peaks along the leading and trailing edges have

been created by the separation of the high and low spectral

components of the square pulse. This is typical of square

dc pulses, which have a much higher spectral content than

the comparable Gaussian pulse.

The pulses in Figs. 7 and 8 are square RF pulses which

have traveled 100 in along a microstrip line with (r= 10.2,

w = 0.020 in, and h = 0.025 in. The square RF pulse in

Fig. 7 has a lower carrier frequency (5 GHz) which is

located in a region of the [,c,,( u ) versus frequency curve

(Fig. 1) where little dispersion is occurring. Fig. 8 is the

same pulse, but ti’th a carrier frequency of 10 GHz. It is

much more dispersed, since the carrier frequency is located

in a region of Fig. 1 where more dispersion is occurring.

Figs. 5 through 8 were computed using numerical integra-

tion and Pramhnick and Bhartia’s dispersion formula.

For some rnicrostrip dispersion problems, a square,

Gaussian, or triangular pulse may not be a good ap-

proximation to the shape of the actual pulse being in-

vestigated. For these ahd other cases, where closed-form

solutions may not be available for the Fourier transform, it

will be necessary to segment the pulse into a number of

square pulses and then to add the contributions from each

of the subsegments. After dispersing the individual subseg-

mented square pulses, the results are added together to get

the entire dispersed arbitrary pulse.

To test this method, a pulse shape which is already

known (a Gaussian pulse) was subdivided into rectangular

segments. The dispersed waveform was then computed by

using the partitioning method. A dispersed Gaussian pulse

which was obtained using seven rectangular segments is

shown in Fig. 9. When this dispersed, segmented pulse

is compared in Fig. 9 to a dispersed Gaussian pulse which

is obtained by using the numerical integration method, it is

noted that some differences appear. The pulse that was

re-created using seven segments is not as smooth as it

should be; this is caused by the coarse partitioning that

was used. If, however, the pulse was divided into 31 square

segments before it was dispersed, the dispersed pulse does

not differ from the Gaussian pulse computed using the

normid numerical method,, as shown in Fig. 9. This parti-

tioning process can be used to analyze the distortion of

any shape pulse, such as a stepped pulse, shown in Fig. 10.

Horizontal segmentation can be applied with similar

succe!$s.

To compare the validity of the Taylor series approxima-

tion method of Section IV, computations were made for

the envelope of distorted Gaussian and square RF pulses

using the Taylor series expansion method. The envelopes

of the distorted pulses were obtained using Ferrer’s [1]

formulations for Gaussian pulses and Knop’s [3] equations

for square pulses.

Using Pramanick and Bhartia’s model for ~,,,,(u), the

frequency-dependent phase constant and its first and sec-
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Fig. 11. Comparison of numerical integration and Taylor series expan-

sion method for an RF Gaussian pulse (carrier frequency= 75 GHz).
Fig. 12. Comparison ofnumerical integration and Taylor series expan-

sion method for an RF square pulse (carrier frequency= 10.0 GHz).
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TABLE I
APPROXIMATECPU Trm FORTYPICAL DISPERSEDPULSESUSING

VARIOUSMETHOD OFANALYSIS

Taylor Series Method of
Numerl cal ExpansloP Stat> onary
Techn]oues Method Phase

DC Gaussian Pulse I 15 sec I — I

C Square Pulse 45 sec

RF Modulated
Gauss,, ” P“],, 145 sec 5 Sec 5 sec

F Modulated
Smare Pulse

180 sec 10 se. 5 sec

Simple Arbitrary
PUI se

90 Sec

tepped DC Pulse 30 sec

ond derivatives become

(24)

where

+ - Creff(o))td;
B=

(6++67)2
(26a)

Q
D=~–4.oB (26b)

u U$ + u=

c, dielectric constant of substrate,

cre,,(0) effective dielectric constant at zero frequency

[19].

Figs. 11 and 12 show the envelopes of dispersed RF

Gaussian and square pulses computed using the Taylor

series expansion method. These are superimposed on RF

pulses which have been computed using numerical integra-

tion for comparison.

These figures, which show at most approximately 10-

percent difference in the amplitudes of the two methods,

exhibit pulses with a low repetition rate in comparison to

the pulsewidth. The higher the carrier frequency, the better

the accuracy of the quadratic approximation.

The computation time for calculating the dispersed

waveforms of RF pulses was greatly reduced by using the

Taylor series expansion method. Table I gives typical times

required to compute dispersed waveforms of various dc

and RF pulses using an IBM 3081. It is evident from these

and other computations not included here that the Taylor

series expansion method yields good waveform approxima-

tions to the distorted RF pulses with a considerable reduc-

tion in computation time.

1435

VI. CONCLUSIONS

The distortion of dc and RF pulses as they propagate

along a rnicrostrip line was investigated using dispersion

models in conjunction with numerical integration and

Taylor series expansion approximation techniques.

Pramanick and Bhartia’s dispersion model provided a con-

venient closed-form equation to evaluate the distortion of

a pulse propagating along a rnicrostrip line. Numerical

integration was required for dc pulses. Arbitrarily shaped

pulses which did not have a closed-form solution for their

Fourier transform were evaluated using the segmenting

method. RF pulses can be analyzed using either numerical

integration or the Taylor series expansion method, with

only a slight decrease in accuracy but considerable im-

provement in computational efficiency.
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