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Dispersion of Transient Signals in Microstrip
Transmission Lines

RICHARD L. VEGHTE, MEMBER, 1EEE, AND CONSTANTINE A. BALANIS, FELLOW, IEEE

Abstract —The distortion of an electrical pulse caused by dispersion as
it propagates along a microstrip line is investigated. A model for dispersion
of the phase constant is selected to meet the frequency, accuracy, and
microstrip parametric requirements. Numerical integration and Taylor
series expansion approximation techniques are used to compute the shape
of dc dispersed pulses having square and Gaussian envelope shapes. Taylor
series expansion methods are more convenient for the analysis of RF
pulses.

1. INTRODUCTION

“"HE DESIGN of MIC’s requires a knowledge of
switching and transient signal behavior in microstrip
transmission lines and semiconductor structures. The dis-
tortion of dc and RF pulses in waveguides and dispersive
materials has received, in the past, considerable attention
[1]-[3]. However, distortion of pulses, both dc and RF, in
microstrip lines has not yet been examined thoroughly [4].
As an electrical pulse travels along a microstrip line, it
becomes distorted due to the dispersion and attenuation
characteristics of the line. While the electric and magnetic
fields are confined to one material in waveguides, coaxial
lines and striplines, the microstrip is open so that the fields
are partially in the air and partially in the dielectric. The
air—dielectric interface prevents propagation of a pure
TEM mode. Therefore, the phase constant is not a linear
function of frequency, and it results in dispersion.

Below a certain frequency (f,), the propagation is ap-
proximately TEM and dispersion is virtually nonexistent.
Pulses which have a spectral content above f, will be
dispersed since the higher harmonics of the pulse will
travel at a slower velocity than the lower harmonics. This
paper combines existing microstrip dispersion formulas
and analytical techniques to examine in microstrips the
dispersed shape of dc and RF pulses having square and
Gaussian envelope shapes.

II. DISTORTION OF SIGNALS

The voltage or electric field at z = 0 (a reference point in
the microstrip line) is represented by

v(t,z=0)={v(t)’ T/2<t<T/2 (1)
0, elsewhere
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In the frequency domain, the signal can be written as

V(w,z=0)= [ v(t,z=0)e &t (2)
~T/2
where V(w) and v(t) form a transform pair. For certain
transient signals, such as a square pulse, the limits —7/2
< T/2 define the pulsewidth, and the signal is confined
to a short time period. For a Gaussian pulse, the time
range of — oo <f < 00 is needed to completely characterize
the response.
At a distance L, the signal (or pulse) in the frequency
domain becomes

V(w,z=L)=V(w,z=0)e YL (3)

The frequency-dependent propagation constant is
(@) = a(w)+ jB(w) (3a)
where a(w) and B(w) are, respectively, the attenuation
and phase constants. For this investigation, the frequency-

dependent attenuation constant a(w) is assumed to be
negligible, so that (3) reduces to

V(w,z=L)=V(w,z=0)e AL, (4)

Taking the inverse transform of (4) leads to the time-
domain representation of the pulse at z = L, and it can be
written as

1 e .
v(t, L) = 2—77.[_ V(w,z=L)e " dw

1
277'

For lossless lines, the phase constant 8(w) can be written
as

f V(w,z=0)e/l A gy,  (5)

B(w) = afpel@) = = e (6] ©)

The expression V(w,z=0), the transform of v(z,0), is
easily obtained for many common waveshapes such as
square, Gaussian, triangular dc pulses, and any RF wave
modulated by these pulses. The transforms of more com-
plex waveforms can be constructed using these basic wave-
forms.

The Fourier transform of a Gaussian pulse whose time-
domain representation is

f(1) = dexp(—a’t?) (7)
is given by [5]

F() = 27 exp(— w/4a?) ®)
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where 2/a is the 3-dB pulsewidth and A4 is the amplitude
of the pulse in the time domain. For a square pulse, the
time-domain representation is

_[A, —L<gt<L
f(0) = { 0, otherwise ®)
while its Fourier transform is [5]
sin(Lw)
F(w)=24—— (10)
w
where 2L is the pulsewidth and A4 is the amplitude of the

pulse.

The Fourier transform of an RF pulse with a carrier
frequency w, has the same form as the dc pulse, but it is
split into two equal components, one of which is shifted up
in frequency and the other is shifted down. For example, a
square pulse with a time-domain representation of

7(1) = {Acoswot, —L<.t<L (11)
0, otherwise
has a Fourier transform of
sin|L{w—w sin| L(w+ w
F(w)=A[ [L(ew— )] [L(w+wp)] (1)
(& —w) (@ +w,)

Fourier transforms, instead of Laplace transforms, are
used to analyze the pulses because they are more conveni-
ent for the interpretation of the dispersion characteristics
from the real frequency spectrum point of view. This is
very attractive for the examination of the effective dielec-
tric constant variations as a function of frequency and
their impact upon the dispersion of the pulses.

III. FREQUENCY-DEPENDENT PHASE CONSTANT

Numerous methods have been used to determine €, ()
for microstrip lines. Many papers use full-wave solutions
such as the spectral-domain [6] or transverse current distri-
bution methods [7]. These full-wave solutions have been
examined [8], compared to other methods, and been found
to be quite accurate. However, these methods depend on
time-consuming computations and not on closed-form
equations, which would be most desirable when con-
fronted with the evaluation of (5). Some papers have
curve-fitted equations for €, (w) which are simple to use.
However, none of these equations extend above 20 GHz,
and they are not adequate for many transient signals that
have frequency components up to 100-200 GHz.

Two methods that may be used to calculate €, (w)
which provide physical insight and fairly simple closed-
form expressions, although they may not be as accurate as
the full-wave analysis, are 1) coupled modes (TEM, TE,
and TM modes) [9], [10] and 2) single longitudinal section
electric (LSE) [11].

Equations which use coupled modes are given by
Schneider [12] (TEM/TE), Carlin [13] (TE/TM),
Kobayashi [14] (TEM/TM), Pramanick and Bhartia [15]
(TEM /TE), and Yamashita [16] (curve fitting using the TE
mode). Getsinger [11] uses the LSE model to determine the
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frequency-dependent dielectric constant, while Kirching
and Jansen [17] curve-fit results from a full-wave,
spectral-domain analysis. From the standpoint of analyti-
cal rigor, simplicity, and agreement with other existing
data, it was found that the model for €, (w) of Pramanick
and Bhartia [15] was as accurate as any of the others. For
this model €, (w) is expressed as

&=, (0)

freﬁ(f)=€r—w (13)
1 + Teif ( e )
¢ \/
where
ZO
=20 (133)
¢, relative dielectric constant of the substrate,

€, (0) effective relative dielectric constant at zero

frequency,
A height of microstrip line above ground plane,
Z, characteristic impedance of microstrip line,
po free-space permeability.

IV. EVALUATION OF INTEGRAL EQUATION

Three different methods to evaluate the integral of (5)
are examined in this section. The complexity of the
frequency-dependent phase constant B(w) precludes solv-
ing for the integral in closed form. Thus, numerical in-
tegration techniques are examined, and a quadratic ap-
proximation to 8(w) (the Taylor series expansion method)
is used to evaluate the integral of (5). The method of
stationary phase is also examined as a possible technique
to evaluate (5).

Numerical integration is the most straightforward tech-
nique for evaluating (5), but its accuracy depends on the
amount of computer time and storage space available. DC
pulses use less computer resources than RF pulses and this
method is best suited for them. The Taylor series expan-
sion method [1] is an approximation to the full integration
of (5). It is slightly less accurate than numerical integra-
tion, but it requires much less computer time to evaluate
the integral, especially for RF pulses.

In (5), the limits of integration are — o0 < w < 00; how-
ever, beyond a certain radian frequency w;, the contri-
butions to the integral are negligible. Narrower pulses have
a higher frequency content and thus will need a higher w,;
thus, significant parts of the integral are not excluded. If =
is the width of the pulse, then

w,=§/7 (14)
where { is a constant which depends on the waveshape.
For example, for a square pulse with a sharp rise time
(high frequency content), { is about 500. For a Gaussian
pulse with a slower rise time, a { of 20 is sufficient. Thus,
(5) becomes

o(t.L) = — [ V(e 2= 0)esteBenl g (15)
, I , w.
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This can be written as a series approximation of the form
1 N
U(t, L) = E Z V(wi’ 7= O)eJ[w,t—B(w,)L] sz (16)
=1

where N is the number of divisions in the frequency
spectrum and Aw(=2{/7/N) is the width of each uni-
form segment. Since we are concerned only with the real
part of the pulse, (16) becomes

N
v(t,L) = % ;l V(w,, z=0)cos|w,—B(w,)L] Aw,.
(17)

Equation (17) is easily programmed on the computer once
V(w,, z=0), the Fourier transform of the pulse being
considered, is known.

In addition to using numerical integration to evaluate
(5), there are approximate methods which can represent it
in closed form. One such method is the Taylor series
expansion, where the phase constant B(w) is represented
by a Taylor series of [1], [2]

B(w) =B(wg)+ B (wo)(w—wy)

s B w6 ) . (18)

The first three terms of the Taylor series expansion are

used to approximate the phase constant in the vicinity of

wq. This is referred to as the quadratic approximation. For

the cases being investigated, it is a good assumption to

consider the phase constant to be a quadratic function of

frequency. If the pulses are sufficiently wide compared to

the carrier frequency, then only a small segment of the

B(w) curve is used and such an approximation is valid.

The expressions for 8'(w,) and B”"(w,) are

)

B(wn) = o

w

%8

.8”("30) = m ,

(19)

w=wg

(20)

=wg

It is possible to obtain closed-form solutions to (5) using
the quadratic approximation if the signal in the frequency
domain at z=0, V(w,z=0), can be written in closed
form. Closed-form expressions have been derived to
evaluate (5) for Gaussian [1] and square [2], [3] RF-mod-
ulated pulses dispersed as they travel in a waveguide.
These equations were modified for microstrips, where the
frequency-dependent S(w) of (6) was formed using
Pramanick and Bhartia’s model [15] for €, (w).

The method of stationary phase [18] is used to evaluate
integrals of the form

1(6)= [~ F(o)er ) do
- o0

N 2
TR L F(e,)e) (21)
—Iu (ws)

where «, represents the stationary phase point obtained
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using

W) =1- = p/(w) =0. (21a)

Equation (5) can be rearranged so that it is of the form
1 ;e
V(t,L)=— f V(w,z=0)e/ e B@L/M gy, (22)
290 V6
Comparing (21) and (22), it is apparent that

F(w)=51;T-V(w,z=O) (22a)

and

L

plo)=w=p(e)—. (22b)

It was found that for a given distance L that the pulse
had traveled, the stationary phase point could only be
found for certain “windows” of time. The windows of time
for the cases investigated were found to correspond to the
location of the pulses; however, the time interval was too
short 10 include the entire pulse in most cases. Therefore,
this technique was found to have limited utility.

V. COMPUTATIONS

The investigation of possible dispersion models for mi-
crostrip transmission lines revealed that there are numer-
ous candidates to choose from. The selection process be-
came even more difficult given the fact that there is no
conclusive experimental data for a frequency-dependent
phase constant for microstrip at higher frequencies (above
20 GHz). Thus, it was necessary to compare the existing
methods with each other in order to identify an acceptable
accurate method. When investigating the frequency-depen-
dent phase constant B(w), it was found that most papers
and books dealt with the frequency-dependent effective
relative dielectric constant €, (w); the two constants are
related by (6). ‘

The six most promising dispersion equations are those
of Getsinger [11], Pramanick and Bhartia [15], Yamashita
[16], Carlin [13], Schneider [12], and Kobayashi [14]. These
were initially chosen because they were valid for high
frequencies (up to 100-200 GHz), which will allow the
analysis of short pulses and pulses with high frequency
content (sharp rise times). These six models cover a wide
range of dielectric constants and microstrip geometries.
Also, these models can be related to the physical micro-
strip line so that conclusions about the dispersed pulse can
be traced to properties of the microstrip line.

A frequency range of 1 to 10 000 GHz was used to cover
the entire dispersive region of possible microstrip transmis-
sion lines. The results for various dielectric constants and
different widths and heights of the microstrip line were
investigated. Dielectric constants of 2.33, 3.78, 6.80, 10.2,
and 13.0 were chosen to represent, respectively, duroid-type
materials, fused silica, beryllium oxide, alumina (or similar
soft substrates), and gallium arsenide. Microstrip line
heights were selected to represent the commonly available
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Fig. 2. Effective dielectric constant of a microstrip line as a function of
frequency for different proposed models (¢, =102, w /4 >1.0).

substrate thickness of the various materials. The line widths
were determined so that the w /4 ratio was less than and
greater than unity. The widths also were chosen so that the
impedances of the lines were on the order of 10-100 & and
were realizable using current fabrication techniques.

The variations of €, (w) as a function of frequency for
six different models are shown in Figs 1 and 2. Those in
Fig. 1 are representative for a microstrip with ¢,=10.2,
w=0.020 in, 2 =0.025 in (w/h = 0.8 <1), while those in
Fig. 2 are for a microstrip with ¢,=10.2, w=10.125 in,
h=0.050 in (w/h=25>1). The data in these figures
illustrate how the relative effective dielectric constant starts
at €, (0) for low frequencies and then increases to €,, the
dielectric constant of the material, at high frequencies.

Before proceeding with the comparison of different dis-
persed pulses that use the different models for €, (w), it
will be convenient to eliminate two of the models. Carlin’s
dispersion formula was eliminated since it has the same
characteristics as some of the other models. Schneider’s
dispersion model was in close agreement with the other
models for narrow lines, but it was consistently shifted
toward higher frequencies for the wider lines (as in Fig. 2).
Kobayashi has included a factor which corrects this prob-
lem.

The distortion of a 7 =10 ps (3-dB width) dc Gaussian
pulse, as predicted using four of these models, traveling a
distance L = 0.354 in along a microstrip whose parameters
and dimensions are the same as those in Fig. 1 is displayed
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in Fig. 3. For comparison, the und1storted pulse is also

exhibited in the figure. The posmon of the undistorted
pulse has been determined assuming that its velocity of
propagation is based on the effective dielectric constant of
the microstrip at zero frequency The waveforms of the
distorted pulses were computed using numerical integra-
tion for the evaluation of (5), as outlined in Section IV.

The distorted waveforms of a dc square pulse of 10 ps

obtained usmgnumencal integration and traveling a dis-
tance L = 0.354 in along a microstrip line whose parame-
ters and dimensions are the same as those in Fig. 2 are

shown in Fig. 4. The undistorted pulse is also displayed for
comparison. It is ‘observed,: especmlly in the undistorted
square pulse, that very small localized sp1kes appear at its
leading and trailing edges. These spikes. are spurious and "
are a consequence of Gibbs’s phenomenon assoc1ated with

Fourier transforms. Proper cho1ce of the samphng pomts
can reduce their impact.
~ The comparison of the dispersion models in Figs. 3 and
4 reveals that the small differences in €, (w). translate into
small differences i the dispersed. waveform The dif-
ferences in the - dispersed ' pulse (dlfferent amplitude,
pulsew1dth and ringing) are particularly small for pulses
with a narrow spectrum, such as the Gaussian pulse. The
dispersed waveforms are still quite sumlar for pulses with a
wide spectral content, such as the square pulse.
Considering ‘the similarities between the dispersed pulses
using the dispersion models of Getsinger, Pramanick and
Bhartia, Yamashita, and Kobayash1 any of these four
dispersion equations would be acceptable for determmmg
the shape of a pulse as it travels along a microstrip line.
However, Pramanick and Bhartia’s, and Getsinger’s d1s-
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persion formulas look more promising due to their simpler
formulation. If numerical integration is used, the simpler
final expressions for €, (w) are signiﬁcant since they will
be evaluated thousands of times for each pulse. If the
Taylor series expansion method 1is used, it will be easier to
take the first and second derivatives of the phase constant
if either of these two models is used.

In order to choose between Getsinger’s model and
Pramanick and Bhartia’s equation, the question of accu-
racy arises. Since both equations are in the same form, the
choice of the inflection frequency is the only difference
between the two. Getsinger’s inflection frequency is always
lower than the one given by Pramanick and Bhartia.
Getsinger uses the LSE analysis to determine the inflection
frequency, while Pramanick and Bhartia use an inflection
frequency related to the cutoff frequency of the TE; mode
which is derived from coupled-mode theory. The inflection
frequency from the coupled-mode theory will be more
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accurate than that derived using a LSE analysis. This is
confirmed by the fact that the other four dispersion for-
mulas all had inflection frequencies that were close to
Pramanick and Bhartia’s while Getsinger’s formulas al-
ways produced an inflection frequency that was lower than
all of the others. So, although Getsinger’s equations were
the first ones (and the ones that the others are often
compared to) and while the other four equations would be
satisfactory, Pramanick and Bhartia’s model for €, [15]
was chosen for the continuation of the investigation of
pulse distortion due to dispersion.

The distortion of a 7 =100 ps (3-dB width) dc Gaussian
pulse that has traveled 40 in along a microstrip line with
€,=10.2, width=0.020 in and height = 0.025 in is -dis-
placed in Fig. 5. The peak amplitude has attenuated, the
pulse is wider, and ringing is evident. This is typical of a
Gaussian dc pulse with low spectral content. A square dc
pulse that has a width of 250 ps and has traveled 1 in
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along a microstrip line with ¢,=10.2, w=0.025 in, and
h=0.025 in is shown in Fig. 6. It is apparent that major
distortion peaks along the leading and trailing edges have
been created by the separation of the high and low spectral
components of the square pulse. This is typical of square
dc pulses, which have a much higher spectral content than
the comparable Gaussian pulse.

The pulses in Figs. 7 and 8 are square RF pulses which
have traveled 100 in along a microstrip line with €, =10.2,
w=0.020 in, and 4 =0.025 in. The square RF pulse in
Fig. 7 has a lower carrier frequency (5 GHz) which is
located in a region of the ¢, (w) versus frequency curve
(Fig. 1) where little dispersion is occurring. Fig. 8 is the
same pulse, but with a carrier frequency of 10 GHz. It is
much more dispersed, since the carrier frequency is located
in a region of Fig. 1 where more dispersion is occurring.
Figs. 5 through 8 were computed using numerical integra-
tion and Pramanick and Bhartia’s dispersion formula.

For some microstrip dispersion problems, a square,
Gaussian, or triangular pulse may not be a good ap-
proximation to the shape of the actual pulse being in-
vestigated. For these and other cases, where closed-form
solutions may not be available for the Fourier transform, it
will be necessary to segment the pulse into a number of
square pulses and then to add the contributions from each
of the subsegments. After dispersing the individual subseg-
mented square pulses, the results are added together to get
the entire dispersed arbitrary pulse.

To test this method, a pulse shape which is already
known (a Gaussian pulse) was subdivided into rectangular
segments. The dispersed waveform was then computed by
using the partitioning method. A dispersed Gaussian pulse
which was obtained using seven rectangular segments is
shown in Fig. 9. When this dispersed, segmented pulse
is compared in Fig. 9 to a dispersed Gaussian pulse which
is obtained by using the numerical integration method, it is
noted that some differences appear. The pulse that was
re-created .using seven segments is not as smooth as it
should be; this is caused by the coarse partitioning that
was used. If, however, the pulse was divided into 31 square
segments before it was dispersed, the dispersed pulse does
not differ from the Gaussian pulse computed using the
normal numerical method, as shown in Fig. 9. This parti-
tioning process can be used to analyze the distortion of
any shape pulse, such as a stepped pulse, shown in Fig. 10.
Horizontal segmentation can be applied with similar -
success.

To compare the validity of the Taylor series approxima-
tion method of Section IV, computations were made for
the envelope of distorted Gaussian and square RF pulses
using the Taylor series expansion method. The envelopes
of the distorted pulses were obtained using Forrer’s [1]
formulations for Gaussian pulses and Knop’s [3] equations
for square pulses.

Using Pramanick and Bhartia’s model for €, («), the
frequency-dependent phase constant and its first and sec-
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sion method for an RF Gaussian pulse (carrier frequency = 75 GHz).

sion method for an RF square pulse (carrier frequency =10.0 GHz).
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TABLEI
APPROXIMATE CPU TiIME FOR TYPICAL DISPERSED PULSES USING
VARIOUS METHOD OF ANALYSIS

Taylor Series Method of
Numerical Expansion Stationary
Techniques Method Phase
DC Gaussian Pulse 15 sec D— —
IDC Square Pulse 45 sec - —
RF Modulated
Gaussian Pulse 145 sec 5 sec 5 sec
RF Modulated
Square Pulse 180 sec 10 sec 5 sec
Simple Arbitrary —
Pulse 90 sec
Complex Arbitrary ; ——
ulse 180 sec
Ltepged DC Pulse 30 sec _— —

ond derivatives become

@ [
=— =—4 23
B(6) = = e (@) == (23)
( wB A (24)
’ = e + —_—
Brle cAd ¢
., 5 wB?> wD (25)
B =2 =T E T T
where
wle,—¢, (0))w?
B= ( r e“( )2 T (263)
(w% + w2)
D 5 40B ¢ 26b
e et e? (26b)
¢, dielectric constant of substrate,
€, .(0) effective dielectric constant at zero frequency

[19].

Figs. 11 and 12 show the envelopes of dispersed RF
Gaussian and square pulses computed using the Taylor
series expansion method. These are superimposed on RF
pulses which have been computed using numerical integra-
tion for comparison.

These figures, which show at most approximately 10-
percent difference in the amplitudes of the two methods,
exhibit pulses with a low repetition rate in comparison to
the pulsewidth. The higher the carrier frequency, the better
the accuracy of the quadratic approximation.

The computation time for calculating the dispersed
waveforms of RF pulses was greatly reduced by using the
Taylor series expansion method. Table I gives typical times
required to compute dispersed waveforms of various dc
and RF pulses using an IBM 3081. It is evident from these
and other computations not included here that the Taylor
series expansion method yields good waveform approxima-
tions to the distorted RF pulses with a considerable reduc-
tion in computation time.
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V1. CONCLUSIONS

The distortion of dc and RF pulses as they propagate
along a microstrip line was investigated using dispersion
models in conjunction with numerical integration and
Taylor series expansion approximation techniques.
Pramanick and Bhartia’s dispersion model provided a con-
venient closed-form equation to evaluate the distortion of
a pulse propagating along a microstrip line. Numerical
integration was required for dc pulses. Arbitrarily shaped
pulses which did not have a closed-form solution for their
Fourier transform were evaluated using the segmenting
method. RF pulses can be analyzed using either numerical
integration or the Taylor series expansion method, with
only a slight decrease in accuracy but considerable im-
provement in computational efficiency.
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